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1 Introduction

In seismic design codes and structural analysis procedures, they have commonly
used the peak ground acceleration (PGA) or spectral acceleration (S,) as the seismic
IMs. However, many studies demonstrated that PGA or S, are not the best selections
for the seismic design and damage analyses of both on-ground and underground
structures [1-9].

The interrelations between seismic IMs and seismic responses of reinforce
concrete (RC) buildings were numerously studied [1, 2, 5, 7, 10-15]. Moreover,
the correlation between seismic motion parameters and damage of other civil engi-
neering structures such as tunnels [3, 16], storage tanks [17], nuclear power plants
[18], and chimneys [ 19] were studied thoroughly. Numerous studies were performed
to identify the good IMs for seismic damages of bridges. Padgett et al. [20] evaluated
optimal IMs for deriving seismic fragility analysis models of multi-span steel girder
bridges. Considering artificial and recorded earthquake motions, they concluded that
PGA and S,(T;) are efficient intensity measures for the artificial ground motions,
while cumulative absolute velocity (CAV) is the most reliable for using recorded
motions. Zhang et al. [9] identified the correlation between seismic IMs of far-field
motions and the structural response of a cable-stayed bridge with a single pylon
in China. The best correlated IMs exhibited were velocity spectral intensity (VSI),
Sa(T1), and Housner intensity (HI). Jahangiri et al. [21] pointed out that root-mean-
square of acceleration (A ) is the optimal intensity measure for seismic performance
assessment of concrete arch bridges. In the study of Zelaschi et al. [22], by inves-
tigating a set of Italian RC bridges with 30 scaled motions they pointed out that
Fajfar intensity (I,), peak ground velocity (PGV), and S, are the optimal IMs. Avsar
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et al. [23] highlighted that accelerated-related IMs are not strongly correlated with
the response of seismic-isolated bridges. Additionally, the period-dependent IMs
(e.g., VSI, HI., modified acceleration spectrum intensity, and S,) are strongly corre-
lated with the deformation base-isolated bridges subjected to normal earthquakes.
Meanwhile, PGV and modified velocity spectrum intensity are good correlation for
pulse-like ground motions.

Previously, the correlation between seismic IMs and damage of buildings and
conventional bridges were well-studied, but it is still insufficient for skewed bridges.
Specifically, the influence of earthquake frequency contents on the correlation anal-
yses was not considered yet. This study aims to sufficiently recognize the rela-
tion between 23 ground motion IMs and seismic performances of skewed bridges
accounting for the low- and high-frequency contents of earthquake. Accordingly,
the strong and weak correlation IMs with structural performances of bridges also
identified based on correlation analyses.

2 Seismic Intensity Measures and Ground Motions

To obtain the seismic IMs, a direct evaluation from earthquake accelerograms and
a calculation by the software can be implemented [24]. This study accounts for 23
common ground motion IMs for correlation analyses. These parameters are calcu-
lated for every motion record using SeismoSignal software [25]. The considered IMs
and its definitions are presented in Table 1.

Some undefined notations in Table 1 can be expressed as t,,; which is the total
duration of earthquake; a(#), v(r), and d(t) are the time-history acceleration, velocity,
and displacement of the record; g is the gravity acceleration; & is the damping ratio;
Sa 1s the spectral acceleration; PS, is the pseudo-spectral velocity; T is the period; T’
is the fundamental period; C; is the Fourier factor; and f; is the discrete frequency.

We selected 290 acceleration records from historic earthquakes. The data is avail-
able in PEER center [36] and KMA [37]. The magnitude of the earthquakes is
ranged from 3.0 to 7.6. Low- and high-frequency content motions are divided with
212 records falling to the low-frequency set and 78 records belonging to the high-
frequency set. It is important to note that the ground motion frequency content is
normally recognized from the response spectra. The earthquake motions with large
spectral accelerations fallen in the frequency range approximately larger than 10 Hz
is considered as a high-frequency (HF) ground motion, otherwise discerned as low-
frequency (LF) motions [38, 39]. Figure 1 shows the response spectra of two groups
of ground motion records.
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Table 1 Selected earthquake IMs

27

No. | Seismic IMs Definition Unit Refs.
1 Peak ground acceleration PGA = max la(t)! g -
2 Peak ground velocity PGV = max Iv(t)l m/s -
3 Peak ground displacement PGD = max Id(t)l m -
4 Ratio of PGV/PGA PGV/PGA S [24]
5 Root-mean-square of acceleration g [26]
Arms = fz - f Cl(f)zdf
6 Root-mean-square of velocity fror m/s [24]
Vims = ﬁ { U(l)zdl
7 Root-mean-square of displacement m [24]
Dyps = ,“ " f d(t)zdt
8 Arias intensit tror m/s 27
y _ 2 awrar [27]
0
9 Characteristic intensity = (Apms) 2/3 N m!-5/25 [28]
10 | Specific energy densit fto m>/s -
P gy destty SED = | v(t)2d:
0
11 Cumulative absolute velocity trot m/s [29]
CAV = [la()|dt
0
12 | Acceleration spectrum intensity 0.5 g*s [30]
ASI= [ S,(5§ =0.05,T)dT
0.1
13 | Velocity spectrum intensity 2.5 m [31]
VSI = f S,(& =0.05,T)dT
0.1
14 | Housner spectrum intensity 2.5 m [30]
Hl = [ PSy,(§ =0.05,T)dT
0.1
15 Sustained maximum acceleration SMA = the 3rd of PGA g [32]
16 Sustained maximum velocity SMV = the 3rd of PGV m/s [32]
0.1-0.5 (& _
17 | Effective peak acceleration EPA = mean(Sq 55 (£=0.05) g [29]
18 Spectral acceleration at T Sa(Ty) g [33]
19 | Spectral velocity at T Sv(T1) m/s -
20 | Spectral displacement at T Sqa(Ty) m -
21 | A95 parameter Ags = 0.764 10438 g [34]
22 Predominant period T, s [24]
23 Mean period C2/f) s [35]
Ty = "5

c
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Fig. 1 Response spectra of selected ground motion records

3 Bridge Modelling

The studied bridge is made of reinforced concrete (RC) with 10 triple-column bents.
The circular cross-section of all piers has a diameter of 0.8 m. The bridge has 11
spans, and each span is 14.5 m length. The column height of bent P1 and P2 is 4.0 m,
while that for bent P4—P6 is 6.0 m, and for other bents is 5.5 m. The bridge is skewed
with an angle of 60°. The configuration and dimensions of the bridge are also shown
in Fig. 2. For the foundation of bridge bents, 12 bored piles (D = 0.4 m) arranged
in a double-row are connected with the pile-cap which its dimensions in the height,
width, and length are 0.9 m, 2.5 m, and 10 m, respectively. The length of piles is
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Fig. 2 Configurations of the RC skewed bridges
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reduced from 22 m (at the bent P1) to 10 m (at the bent P10). The piles are mostly
embedded into sand, gravel-sand, amber gravel, weathered rock and soft rock layers.

The open-source platform, OpenSees [40], is employed to build the finite element
model of the bridge. To model concrete material, the concrete02 model is used [41],
whereas the steel02 model is applied for modelling reinforcement in OpenSees [42].
Itis noted that those models are able to consider the nonlinearity of materials [43—47].

The girder of bridges is assumed to be elastic behaviour during seismic exci-
tations. Thus, the ElasticMembranePlateSection element is assigned to the bridge
slab. The column bridge is modelled using nonlinearBeamColumn clements. Figure 3
shows the fiber-section modelling scheme of the bridge column. Also, the moment—
curvature relation of column cross-sections are presented in Fig. 3. Additionally,
considering the soil-structure interaction in the bridge, the piles are modelled using
elastic beam elements, in which a series of soil springs are attached to element nodes.
To model soil springs, the zerolength model represented by p-y curve [48] is utilized,
as illustrated in Fig. 4. Figure 5 shows the 3D finite element modelling of the bridges
in OpenSees. The eigenvalue analysis result is described in Fig. 6.
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Fig. 5 3D finite element e
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Fig. 6 Eigenvalue analysis results

4 Seismic Response and Correlation Analysis

A series of nonlinear time-history analyses were performed. We imposed all ground
motions in two groups on the bridge model in horizontal directions and captured the
structural responses associated with each ground motion. Since the pier is one of
the most crucial components of the bridge structures, seismic performances of the
bridge are measured in terms of the drift ratio and shear forces of bridge piers. The
use of displacement (or drift ratio) and internal forces is common and facilitated in
the seismic design and fragility analyses [43—47, 49]. Figure 7 illustrates responses
of the bridge subjected to the 1989 Loma Prieta and the 2016 Gyeongju earthquake,
in which the displacement is measured at the top of the middle pier, while the shear
force is monitored at the bottom of that pier. The responses of all bridge piers are
obtained for every ground motion records.

The relationship between seismic responses of the structure and earthquake IMs
is needed to identify the strong and the weak correlation indicators. For this study,
the Pearson’s coefficient is used to reflect the correlation between seismic responses
of the bridge and earthquake IMs. The linear correlation coefficient given in Ang
and Tang [50] is defined as
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(b) Seismic responses of bridge under the 2016 Gyeongju (HF) earthquake
Fig. 7 Example of seismic responses of the bridge under LF and HF earthquakes
1 i —X)(yi =y
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where x, y, are the sample means of variables x; and y;, and x; represents the seismic
responses of bridges, while y; represents the intensity measures. o,,0, are the sample
standard deviations of x and y, determined by

1 5 1 —2
oy = \/n 1 [(Zx)? —=n(®)*]; 0y = \/ﬁ[(z)ﬁ)z —n(y)’] )

We calculated the correlation coefficients for seismic responses of the bridge and
IMs associated with two groups of ground motions. It should be noted that the results
are showed here for a representative bridge pier because within a specific bridge the
same trend is observed for all piers. Figures 8 and 9 show the calculated correlation
coefficients corresponding to each earthquake IM for both LF and HF motions. In the
case of low-frequency ground motions, it can be demonstrated that Arias intensity (I,,)
has the strongest correlation with seismic damage, followed by characteristic inten-
sity (I¢), S4(T), and spectral velocity at the fundamental period (Sy(T1)). Whereas,
PGV/PGA ratio, mean period (Ty,), and predominant period (T,) are weak corre-
lated parameters with seismic damage of bridges. For the high-frequency ground
motions, the strongest correlated measure with damage is specific energy density
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Fig. 8 Correlation between the dift ratio of piers and seismic IMs

(SED), followed by I, root-mean-square of velocity (Vys) and I.. Similar to the low
frequency motion group, three low-correlated IMs are PGV/PGA ratio, Ty, and T,,.
The results also indicate that PGA and PGV have medium correlation and it may not
always the best parameters for seismic design and seismic vulnerability assessment
of skewed bridges.

This study identified the strongly correlated earthquake IMs for seismic responses
of skewed RC bridges. Designers or analysts can use S,(T;), Sy(T), I, or I for the
design or performance evaluation process as well as fragility analyses of such bridges.
Also, the findings of this paper imply that we should not use PGV/PGA, Ty, or T, for
seismic design and analyses of the bridges. These findings are partially consistent
with those of Padgett et al. [20] and Jahangiri et al. [21] since the bridge type is not
similar.
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A series of nonlinear time-history analyses are performed for the skewed bridge.

Two groups of earthquake ground motions classified into low- and high-frequency

contents are used for analyses. For each ground motion, 23 seismic intensity measures
are considered. A series of correlation coefficients between seismic responses of

bridges and earthquake intensity measures are calculated. The following conclusions

are drawn based on the analysis results.

e For the low frequency ground motions, the best intensity measure for correlating

with seismic responses of bridges I, followed by I, S,(Ty), and S, (T).

e For the high frequency ground motions, the well-correlated IMs with seismic

performances are SED, I, Vs, and 1.

® PGV/PGA, T, and T, show to be weak correlated measures if bridges subjected to
low frequency motions. This trend is also observed for the case of high frequency

motions.

e PGA and PGV have a medium correlation with responses of bridge structures
during both low- and high-frequency earthquake motions. A selection of PGA or
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PGV for seismic design and seismic vulnerability assessment of bridges may not
be the best option.
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